Abstract
In order to explore the ceramic composition in the morphotropic phase boundary suitable for the high temperature electronic components, Pb(Sc1/2Nb1/2)O3-Pb(In1/2Nb1/2)O3-PbTiO3(PSN-PIN-PT) ceramics were designed and prepared by using the solid-state reaction method. Effect of the ceramic composition on the phase structure and electric properties of the PSN-PIN-PT ceramics were investigated. For 0.40PSN-(0.60-x)PIN-xPT(x = 0.360, 0.375, 0.390, 0.405), the increase in the PT could improve gradually Curie temperature Tc (262–292℃) and phase transition Tr−t (94–181℃). Maximum of piezoelectric coefficient d33 (578 pC/N) could be obtained in the 0.40PSN-0.21PIN-0.39PT ceramics, together with large residual polarization Pr (~ 36.7 µC/cm2) and high coercive field Ec (~ 9.3 kV/cm). These performances make the PSN-PIN-PT ceramics have great potential applications in the high temperature device.