Single-Cell RNA Sequencing Reveals Heterogeneity of ALI Model and Epithelial Cell Alterations after Exposure to Electronic Cigarette Vapor

Author:

Cai Meng-yun1,Mao Xiaofan1,Zhang Beiying1,Yip Chung-Yin2,Pan Ke-wu2,Niu Ya2,Tsui Stephen Kwok-Wing2,Vong Joaquim Si-Long2,Mak Judith Choi-Wo3,Luo Wei1,Ko Wing-Hung2

Affiliation:

1. The First People’s Hospital of Foshan

2. Chinese University of Hong Kong

3. University of Hong Kong

Abstract

Abstract Background Electronic cigarettes (e-cigarettes) have been advertised as a healthier alternative to traditional cigarettes; however, their exact effects on the bronchial epithelium are poorly understood. Air-liquid interface (ALI) culture allows human primary bronchial epithelial cells to differentiate into bronchial epithelium (ALI-HBE), providing an in vitro model that simulates the biological characteristics of normal bronchial epithelium. Methods Single-cell RNA sequencing of ALI-HBE was used to reveal previously unrecognized transcriptional heterogeneity within the human bronchial epithelium and cell type–specific responses to acute exposure to e-cigarette vapor (e-vapor) containing distinct components (nicotine and/or flavoring). Results Acute exposure to e-vapor containing nicotine affected gene expression related to secretory function and basal-to-secretory transformation. In addition, acute exposure to e-vapor containing flavoring might promote susceptibility to virus infection and activate epithelial-to-mesenchymal transition. Conclusion The ALI-HBE model recapitulates the heterogeneity and transcriptional characteristics of human bronchial epithelium. Single-cell sequencing data provided high-resolution insights into e-vapor–induced remodeling of bronchial epithelium. The data also indicate factors on bronchial epithelial cells that may promote SARS-CoV-2 infection and suggest therapeutic targets for restoring normal bronchial epithelium function after e-cigarette use.

Publisher

Research Square Platform LLC

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3