Unraveling the Complexities of Aerosol-Meteorology Interactions on Snowmelt in High Mountain Asia

Author:

Roychoudhury Chayan1,He Cenlin2,Kumar Rajesh2,Arellano Avelino1

Affiliation:

1. University of Arizona

2. National Center For Atmospheric Research (NCAR)

Abstract

Abstract Snowmelt in High Mountain Asia is heavily influenced by interactions of aerosols and meteorology. However, uncertainties persist due to the complexity of these interactions, which are typically addressed using myopic approaches and are insufficiently represented in current climate models. Equally ambiguous is the impact of these interactions on snow processes in the context of climate change. Here we present a broader strategy using network theory to attribute key quantities that influence higher-order processes within snowmelt. We combine statistical and machine learning methods using observational and model data, highlighting the underappreciated relevance of coupled processes between aerosols and meteorology on snow, as well as the inconsistent representation of aerosol-meteorology interactions within major reanalyses. We find that carbonaceous aerosols and large-scale circulation emerge as the main drivers of snow interactions, emphasizing the need for their serious consideration in integrated Earth system models for the accurate assessment of water availability in developing economies.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3