Exploring the Vibrational Characteristics of Wind Turbine Drivelines

Author:

Mohamedi Walid

Abstract

Abstract The significance of understanding these vibrational characteristics cannot be overstated. It serves as a foundational element for enhancing the overall reliability of wind turbines. Identifying and comprehending the root causes of vibrations empower maintenance teams to optimize strategies, addressing issues before they escalate into major concerns. This proactive approach is instrumental in preventing catastrophic failures, minimizing downtime, and ultimately ensuring the extended longevity of wind energy systems. As we navigate through the vibrational landscape of wind turbine drivelines, this detailed exploration aims to shed light on the nuanced dynamics at play. By doing so, we contribute to the collective knowledge base that fuels advancements in wind energy technology. From the intricacies of mechanical resonance to the impact of external forces, this examination provides valuable insights that pave the way for more resilient and efficient wind turbine designs in the pursuit of sustainable energy solutions.

Publisher

Research Square Platform LLC

Reference63 articles.

1. Khaoula, R.S., Ghemari, Z.: Tarak Benslimane ‘’Extraction of the relative sensitivity model and improvement of the piezoelectric accelerometer performances’’ International Conference on Signal, Image, Vision and their Applications (SIVA), Guelma, Algeria; 11/2018. (2018)

2. Salah Saad ‘’The use of mechanical sensitivity model to enhance capacitive sensor characteristics’’;Zine;Analog Integr. Circuits Signal Process.,2019

3. Salah Saad ‘’Enhancement of capacitive accelerometer operation by parameters improvement’’;Zine;Int. J. Numer. Modelling Electron. Networks Devices Fields,2019

4. Zine, Ghemari, et al.: l, ‘’Appropriate Choice of Damping Rate and Frequency Margin for Improvement of the Piezoelectric Sensor Measurement Accuracy’’ Journal of Advanced Manufacturing Systems, Vol. 20, No. 3, PP: 537–548. (2021)

5. Condition Monitoring and Fault Detection of Wind Turbine Driveline With the Implementation of Deep Residual Long Short-Term Memory Network;He Y;IEEE Sens. J.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3