New insights into the life-stage development and life-cycle duration of Meloidogyne enterolobii, M. incognita and M. javanica

Author:

Collett Raymond Lesley1,Rashidifard Milad2ORCID,Marais Mariette3,Daneel Mieke4,Fourie Hendrika1

Affiliation:

1. North-West University Potchefstroom Campus: North-West University

2. JKI Braunschweig Messeweg: Julius Kuhn-Institut Standort Braunschweig-Messeweg

3. ARC: Agricultural Research Council, Plant health and protection

4. Agriculture research council, Tropical and subtropical crops

Abstract

Abstract Meloidogyne enterolobii is a highly pathogenic nematodes species that renders host plant resistance ineffective that exists for other species. The life-cycle development, duration, and reproduction potential of three Meloidogyne species occurring in South Africa, viz. M. enterolobii, M. incognita and M. javanica were determined in roots of three crops: tomato (‘Moneymaker’), soybean (‘DM-5953-RSF’) and maize (‘P-2432-R’) under glasshouse conditions. During time intervals 3-, 5-, 10-, 15-, 20-, and 25-days after inoculation (DAI), 20 randomly selected individuals, representing different life-stages of each species, were isolated from crop roots. Meloidogyne enterolobii had a quicker life cycle development compared to the other two species. Mature females were observed 15 DAI for all three species, but single eggs of M. enterolobii were present at 15 DAI opposed to egg masses only found 20 and 25 DAI for the other two species. Second generation motile J2 were observed for M. enterolobii and M. javanica from 20 DAI and at 25 DAI for M. incognita. Substantially shorter degree days (DD) were recorded for M. enterolobii being 216 for tomato, 195 for soybean and 232 for maize; for M. incognita it was 292 for tomato, 264 for soybean and 314 for maize; and for M. javanica it was 276 for tomato, 248 for soybean and 298 for maize. The use of genotypes with shorter growing periods is suggested to play a crucial role in preventing more generations of M. enterolobii developing which is foreseen to potentially result in higher population densities and severe crop damage.

Publisher

Research Square Platform LLC

Reference42 articles.

1. Abad, P., Castagnone-Sereno, P., Rosso, M. N., Engler, J. A., & Favery, B. (2009). Invasion, Feeding and Development. Root-knot nematodes (pp. 163–181). CAB International.

2. Maximum-minimum temperatures as a basis for computing heat units;Arnold CY;American Society for Horticultural Science,1960

3. Embryogenesis, penetration and post penetration development of Meloidogyne enterolobii in guava (Psidium guajava L);Ashokkumar N;Annals of Plant Protection Sciences,2019

4. Morphological and molecular characterization of Meloidogyne mayaguensis isolates from Florida;Brito J;Journal of Nematology,2004

5. An improved technique for cleaning and staining plant tissues for detection of nematodes;Byrd DW;Journal of Nematology,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3