Spatial Quantification of Marine Litter Using Satellite and Drone Data through Empirical and Deep Learning Techniques – A Case Study from India
Author:
Affiliation:
1. National Centre for Coastal Research
2. Kagoshima University
3. Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
4. University of Connecticut
Abstract
Marine Litter is a major contaminant in the world's oceans. The mismanaged land-based garbage reaches the marine environment via rivers and creeks. Remote sensing techniques have the potential for detecting, classifying, and quantifying litter patches in the coastal zone. A case study for Chennai metropolitan city beaches attempted to quantify debris using different satellite sensors with specific spectral bands. Equally, the drone can detect and quantify macro litters (> 5 mm) at a relatively better resolution (2 to 2.5 cm). This study was carried out to evaluate the suitability of the drone images for detecting macro litter in the coastal segment. Image-based semantic segmentation deep learning techniques are applied. Estimating litter abundance with the spatial extent of natural and artificial litter on the beaches agrees with ground truth data.
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Andriolo U, Topouzelis K, van Emmerik THM, Papakonstantinou A, Monteiro JG, Isobe A, Hidaka M, Kako S, Kataoka T, Gonçalves G (2023) Drones for litter monitoring on coasts and rivers: suitable flight altitude and image resolution. Marine Pollution Bulletin, 195. https://doi.org/10.1016/j.marpolbul.2023.115521
2. Microplastics Pollution in Rivers;Bratovcic A,2022
3. Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing;Asner G;Global Ecol Conserv,2016
4. Finding Plastic Patches in Coastal Waters using Optical Satellite Data;Biermann L;Sci Rep,2020
5. Bratovcic A, Nithin A, Sundaramanickam A (2022) Microplastics Pollution in Rivers. In M. Sillanpää, A. Khadir, & S. S. Muthu (Eds.), Microplastics Pollution in Aquatic Media: Occurrence, Detection, and Removal (pp. 21–40). Springer Singapore. https://doi.org/10.1007/978-981-16-8440-1_2
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3