Machine learning and metagenomics enhance surveillance of antimicrobial resistance in chicken production in China

Author:

Baker Michelle1ORCID,Zhang Xibin2,Guerra Alexandre Maciel1,Dong Yinping3,Wang Wei3,Hu Yujie3,Renney David4,Hu Yue1,Liu Longhai5,Li Hui6,Tong Zhiqin6,Zhang Meimei7,Geng Yingzhi7,Zhao Li8,Hao Zhihui9,Senin Nicola10,Chen Junshi11,Peng Zixin3,Li Fengqin12,Dottorini Tania1

Affiliation:

1. University of Nottingham

2. Shandong New Hope Liuhe Group Co., Ltd., and Qingdao Key Laboratory of Animal Feed Safety

3. NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment

4. Nimrod Veterinary Products Limited

5. Shandong Kaijia Food Co. LTD

6. Luoyang Center for Disease Control and Prevention

7. Liaoning Provincial Center for Disease Control and Prevention

8. Qingdao Agricultural University

9. China Agricultural University

10. University of Perugia

11. Peking University

12. China National Center for Food Safety Risk Assessment

Abstract

Abstract The use of antimicrobials in livestock production is associated with the rise of antimicrobial resistance (AMR). China is the largest consumer of antimicrobials and improving AMR surveillance methods may help inform intervention. Here, we report the surveillance of ten large-scale chicken farms and four connected abattoirs from three Chinese provinces, over 2.5 years. By using a bespoke data-mining approach based on machine learning, we analysed microbiomes and resistomes from birds, carcasses and environments. We found that a core subset of the chicken gut resistome and microbiome, featuring clinically relevant bacteria and antibiotic resistance genes correlates with AMR profiles of Escherichia coli colonizing the gut. This core is itself influenced by environmental temperature and humidity, contains clinically relevant mobile ARGs shared by chickens and environments, and correlates with antimicrobial usage. Our findings indicate a viable route to optimize AMR surveillance in livestock production.

Publisher

Research Square Platform LLC

Reference98 articles.

1. Tackling drug-resistant infections globally: final report and recommendations;O'Neill J;The Review on Antimicrobial Resistance,2016

2. Bayesian evolutionary analysis by sampling trees;Drummond AJ;BMC Evol. Biol.,2007

3. Bruinsma, J. World agriculture: towards 2015/2030: an FAO perspective. (Earthscan, 2003).

4. Mitigating the risks posed by intensification in livestock production: the examples of antimicrobial resistance and zoonoses;Gilbert W;Animal,2021

5. Status report on antimicrobial resistance;FAO;Rome: Food and Agriculture Organization of the United Nations,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3