TSPT ReID: Triple Streams with Pos-insertion Transformer for Person Re-identification

Author:

Li Xujun1,Rao Liming1,Zhang Tengze1,Chang Jia1,Duan Zhicheng1

Affiliation:

1. Xiangtan University

Abstract

Abstract

In the process of person re-identification (ReID), the disparity of various datasets caused by different cameras and viewing distances poses challenges. Additionally, the inherent limitation of convolutional neural networks (CNNs) in capturing long-range dependencies exacerbates these challenges. To address these issues, this paper proposes the Triple Streams with Pos-insertion Transformer ReID (TSPT ReID) based on the Transformer architecture. The key design of TSPT ReID, the Triple Streams Transformer Encoder (TST Encoder), establishes multi-head attention layers on three different scales to enhance the correlation between various scales. To enhance the recognizability and robustness of valid pedestrian edges, the Shift Pos-insertion Module (SPI Module) is introduced by adding shift-based position coding in the attention layers without introducing additional parameters. The experimental results show the effectiveness of the model on multiple datasets, achieving 82.9% mAP and 91.4% Rank-1 accuracy on the DukeMTMC, and 83.5% mAP and 85.9% Rank-1 accuracy on CUKH03.

Publisher

Research Square Platform LLC

Reference49 articles.

1. Imagenet classification with deep convolutional neural networks;Krizhevsky A;Commun ACM,2017

2. Deep residual learning for image recognition: A survey;Shafiq M;Appl Sciences-Basel,2022

3. Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effective receptive field in deep convolutional neural networks. Advances in neural information processing systems 29

4. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). p 3431–3440

5. Zhang Z, Lan C, Zeng W, Jin X, Chen Z (2020) Relation-aware global attention for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). p 3186–3195

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3