Effect of ATG12–ATG5-ATG16L1 autophagy E3 complex on the ability of LC3/GABARAP proteins to induce vesicle tethering and fusion

Author:

Iriondo Marina N.1,Etxaniz Asier1,Varela Yaiza R.1,Ballesteros Uxue1,Lázaro Melisa2,Valle Mikel2,Fracchiolla Dorotea3,Martens Sascha3,Montes L. Ruth1,Goni Felix M1ORCID,Alonso Alicia1

Affiliation:

1. University of the Basque Country: Universidad del Pais Vasco

2. CIC bioGUNE

3. University of Vienna: Universitat Wien

Abstract

Abstract In macroautophagy, the autophagosome (AP) engulfs portions of cytoplasm to allow their lysosomal degradation. AP formation in humans requires the concerted action of the ATG12 and LC3/GABARAP conjugation systems. The ATG12–ATG5-ATG16L1 (E3) complex acts as a ubiquitin-like E3 ligase enzyme, promoting LC3/GABARAP protein anchoring to the AP membrane. The role of the various proteins in the AP expansion process is still unclear, in part because there are no studies comparing LC3/GABARAP-family member roles under the same conditions, and also because the full human E3 complex was only recently available. In the present study, the lipidation of six members of the LC3/GABARAP family has been reconstituted in the presence and absence of E3, and the mechanisms by which E3 and LC3/GABARAP proteins participate in vesicle tethering and fusion have been investigated. In the absence of E3, GABARAP and GABARAPL1 showed the highest activities. Differences found within LC3/GABARAP proteins suggest the existence of a lipidation threshold, lower for the GABARAP subfamily, as a requisite for tethering and inter-vesicular lipid mixing. E3 increases and speeds up lipidation and LC3/GABARAP-promoted tethering. However E3 hampers LC3/GABARAP capacity to induce inter-vesicular lipid mixing or subsequent fusion, presumably through formation of a rigid scaffold on the vesicle surface. Our results suggest a model of AP expansion in which the growing regions would be areas where the LC3/GABARAP proteins involved should be susceptible to lipidation in the absence of E3, or else a regulatory mechanism would allow vesicle incorporation and phagophore growth when E3 is present.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3