Signal Slice and Tensor-Based Blind Separation of Underdetermined Mixtures

Author:

Luo Weilin1,Jin Hongbin1,Cheng Wei1,Li Hao1,Zuo Jiajun1,Li Xiaobai1

Affiliation:

1. Air Force Early Warning Academy

Abstract

Abstract A novel underdetermined blind separation method is proposed based on signal slice and tensor decomposition to explore effective statistical information and improve separation performance. Firstly, the whitening signal is partitioned into several slices, and the delay covariance matrix of each slice is calculated. These delay covariance matrices are then stacked into third-order tensors and compressed into low-dimensional core tensors using high-order singular value decomposition. Next, the third-order tensors are decomposed using canonical polyadic decomposition through weight nonlinear least square to obtain the mixed matrix. Finally, by leveraging signal independence, a matrix diagonalization method is employed to recover the source signals. Simulation results demonstrate that the proposed method effectively suppresses the influence of Gaussian noise and improves the estimation accuracy. Moreover, the proposed method achieves superior separation results compared to seven representative approaches.

Publisher

Research Square Platform LLC

Reference28 articles.

1. Blind array signal separation and DOA estimation method based on eigenvalue decomposition[J];Xiong K;Signal, Image and Video Processing,2021

2. Underdetermined blind separation of source using lp-norm diversity measures[J];XIE Y;Neurocomputing,2020

3. A moment-based estimation strategy for underdetermined single-sensor blind source separation[J];SMITH S;IEEE Signal Processing Letters,2019

4. Under-Determined Convolutive Blind Source Separation Combining Density-Based Clustering and Sparse Reconstruction in Time-Frequency Domain[J];Junjie Y;IEEE Transactions on Circuits and Systems I: Regular Papers

5. Blind signal estimation using structured subspace technique[J];Lawal A;IEEE Transactions on Circuits and Systems II: Express Briefs,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3