Enhancing Weakly Supervised Semantic Segmentation through Multi-Class Token Attention Learning

Author:

Luo Huilan1,Zeng Zhen1

Affiliation:

1. Jiangxi University of Science and Technology

Abstract

Abstract

Weakly supervised semantic segmentation (WSSS) using image-level class labels is challenging due to the limitations of Class Activation Maps (CAMs) in convolutional neural networks (CNNs), which often highlight only the most discriminative image regions. We propose the Hierarchical Multi-Class Token Attention Network (HMCTANet), a novel approach leveraging a Conformer backbone that integrates CNN and Transformer branches. HMCTANet enhances CAMs through multi-class token attention and a Class-Aware Training (CAT) strategy that aligns class tokens with ground-truth labels. Additionally, we introduce a Class Token Regularization Module (CTRM) to improve the discriminative power of class tokens. Our Refinement Module (RM) further refines segmentation by combining class-specific attention and patch-level affinity from the Transformer branch with the CAMs from the CNN branch. HMCTANet achieves state-of-the-art performance, with mIoU scores of 69.0% and 68.4% on the PASCAL VOC 2012 validation and test sets, respectively, demonstrating the effectiveness of our approach for WSSS tasks.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3