Bardoxolone methyl inhibits the infection of rabies virus via Nrf2 pathway activation in vitro

Author:

Chi Yinglin1,Xie Yuan1,Liu Shu Qing1,Zhu Wu Yang1

Affiliation:

1. National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention

Abstract

Abstract Background Rabies is a widespread, fatal, infectious disease. Several antivirals against rabies virus (RABV) infection have been reported, but no approved, RABV-specific antiviral drugs that inhibit RABV infection in the clinic after symptom onset are available. Therefore, more effective drugs to reduce rabies fatalities are urgently needed. Bardoxolone methyl (CDDO-Me), an FDA-approved compound that has long been known as an antioxidant inflammatory modulator and one of the most potent nuclear factor erythroid-derived 2-like 2 (Nrf2) activators, protects myelin, axons, and CNS neurons by Nrf2 activation. Therefore, we investigated the potency of its anti-RABV activity in vitro. Methods The mouse neuroblastoma cell line Neuro2a (N2a) and three RABV strains of different virulence were used; the cytotoxicity and anti-RABV activity of CDDO-Me in N2a cells were evaluated by CCK-8 assay and direct fluorescent antibody (DFA) assay. Pathway activation in N2a cells infected with the RABV strains SC16, CVS-11 or CTN upon CDDO-Me treatment was evaluated by western blotting (WB) and DFA assay. Results CDDO-Me significantly inhibited infection of the three RABV strains of differing virulence (SC16, CVS-11 and CTN) in N2a cells. We also examined whether CDDO-Me activates the Nrf2-associated pathway upon infection with RABV strains of differing virulence. Nrf2, phosphorylated sequestosome (SQSTM1), SQSTM1, hemoglobin oxygenase (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) expression in N2a cells increased to varying degrees with CDDO-Me treatment, accompanied by Kelch-like ECH-associated protein 1 (Keap1) dissociation, upon infection with SC16, CVS-11 or CTN. The activation of SQSTM1 phosphorylation was significantly associated with the degradation of Keap-1 in CDDO-Me-treated N2a cells upon RABV infection. Furthermore, N2a cells pretreated with the Nrf2-specific inhibitor ATRA showed a significant decrease in HO-1 and NQO1 expression and a decrease in the anti-RABV efficacy of CDDO-Me. These inhibitory effects were observed upon infection with three RABV strains of differing virulence. Conclusion CDDO-Me inhibited RABV infection via Nrf2 activation, promoting a cytoprotective defense response in N2a cells. Our study provides a therapeutic strategy for RABV inhibition and neuroprotection during viral infection.

Publisher

Research Square Platform LLC

Reference67 articles.

1. WHO Expert Consultation on Rabies. Second report;World Health O;World Health Organ Tech Rep Ser

2. Rupprecht CE. Rhabdoviruses: Rabies Virus. In Medical Microbiology. 4th edition. Edited by Baron S. Galveston (TX); 1996.

3. Comparative studies between pathogenesis of street and fixed rabies infection;Miyamoto K;J Exp Med,1967

4. Met-CCL5 represents an immunotherapy strategy to ameliorate rabies virus infection;Huang Y;J Neuroinflammation,2014

5. Antiviral therapy for human rabies;Appolinario CM;Antivir Ther,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3