Deep learning-based Fast Volumetric Image Generation for Image-guided Proton FLASH Radiotherapy

Author:

Chang Chih-Wei1,Lei Yang1,Wang Tonghe2,Tian Sibo1,Roper Justin1,Lin Liyong1,Bradley Jeffrey1,Liu Tian3,Zhou Jun1,Yang Xiaofeng1

Affiliation:

1. Emory University

2. Memorial Sloan Kettering Cancer Center

3. Mount Sinai Medical Center

Abstract

Abstract Objective: FLASH radiotherapy leverages ultra-high dose-rate radiation to enhance the sparing of organs at risk without compromising tumor control probability. This may allow dose escalation, toxicity mitigation, or both. To prepare for the ultra-high dose-rate delivery, we aim to develop a deep learning (DL)-based image-guide framework to enable fast volumetric image reconstruction for accurate target localization for proton FLASH beam delivery. Approach: The proposed framework comprises four modules, including orthogonal kV x-ray projection acquisition, DL-based volumetric image generation, image quality analyses, and water equivalent thickness (WET) evaluation. We investigated volumetric image reconstruction using kV projection pairs with four different source angles. Thirty patients with lung targets were identified from an institutional database, each patient having a four-dimensional computed tomography (CT) dataset with ten respiratory phases. Leave-phase-out cross-validation was performed to investigate the DL model’s robustness for each patient. Main results: The proposed framework reconstructed patients’ volumetric anatomy, including tumors and organs at risk from orthogonal x-ray projections. Considering all evaluation metrics, the kV projections with source angles of 135° and 225° yielded the optimal volumetric images. The patient-averaged mean absolute error, peak signal-to-noise ratio, structural similarity index measure, and WET error were 75±22 HU, 19±3.7 dB, 0.938±0.044, and -1.3%±4.1%. Significance: The proposed framework has been demonstrated to reconstruct volumetric images with a high degree of accuracy using two orthogonal x-ray projections. The embedded WET module can be used to detect potential proton beam-specific patient anatomy variations. This framework can rapidly deliver volumetric images to potentially guide proton FLASH therapy treatment delivery systems.

Publisher

Research Square Platform LLC

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3