ZnO-Salen NPs employed as chemosensor for detection of Al 3+ and K + in aqueous medium, developing human cell images

Author:

Huerta-Aguilar Carlos Alberto1,Bazany-Rodríguez Iván J.2,Hansberg-Pastor Valeria1,Camacho-Arroyo Ignacio2,Reyes-Dominguez Iván Alejandro3,Cervantes-Avilés Pabel Antonio1,Thangarasu Pandiyan2

Affiliation:

1. Tecnológico de Monterrey

2. Universidad Nacional Autónoma de Mexico

3. Universidad Autónoma de San Luis Potosí

Abstract

Abstract

ZnO nanoparticles (NPs) were prepared and characterized by different analytical methods and then they were used to decorate with N,N´-bis(salicylidene)ethylenediamine (salen) in order to perform as receptor for the metal ions in an aqueous medium. The results show that ZnO-salen selectively detects Al3+ ions in aqueous medium since the intensity of fluorescence has been enhanced significantly. However, the presence of K+ in the medium further intensified the fluorescence emission for the [ZnO-salen-Al3+] system. The above system has been applied to recognize cells by developing the cell images, for which, the fluorescence image is brightened if a human glioblastoma U251 cell contains [ZnO-salen-Al3+] + K+ ions, consisting of the fluorescence titration. The binding global constant for Al3+ and the subsequent recognition of K+ by ZnO-salen resulted in β2(Al3+) = 6.61x103 and β2(K+) = 3.71x103 with a detection limit of 36.51 µM for Al3+ and 17.39 µM for K+. In the cell toxicity analysis, the cell viability was over 85% for the ZnO-salen even in the concentration as high as 100 mM.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3