Numerical simulation and parameter optimization of earth auger in hilly area using EDEM software

Author:

Wang Guofu1,Zhang Wei1,Ji Min1,Miao Hu1,Jin Zheng1

Affiliation:

1. Research Institute of Wood Industry, Chinese Academy of Forestry

Abstract

Abstract Digging in hilly regions is an important measure to promote afforestation on difficult sites. In view of the working conditions to build fish-scale pit on slope, the auger mechanism of soil lifting and throwing was investigated in this study. This study utilized EDEM software to establish the operation model of the earth auger and conduct DEM (Discrete Element Method) virtual simulation experiments. A quadratic rotating orthogonal center combination test was implemented by setting the efficiency of conveying-soil (Y1) and the distance of throwing-soil (Y2) as the evaluation indices. Variance analysis and response surface optimization were performed on the virtual experimental data. The results indicated that the weight of the factors affecting the Y1 and Y2, were feeding speed > helix angle > rotating speed > slope angle, and slope auger > rotating speed > feeding speed > helix angle. The optimal parameter combination of each influencing factor was obtained. Among them, when the slope preparation was required, the optimal operating parameter combination of the auger was: Slope of 26.467°, Helix angle of 21.567°, Feeding speed of 0.1 m/s, Rotating speed of 67.408 r/min. This research provides theoretical references for the design optimization of the earth auger in hilly regions.

Publisher

Research Square Platform LLC

Reference32 articles.

1. Current Research Situation and Development Trend of Earth Auger in Home and Abroad;Yu JG;Journal of Agricultural Mechanization Research,2006

2. Application of Excavator in Forestry Development;Fang Q;Agricultural Science & Technology and Equipment,2020

3. Development of Earth Augers and Application in Stony Mountain Regions, FORESTRY MACHINERY AND WOOD WORKING EQUIPMENT;Jin C,2021

4. Performance test of hand-held electric hole-digger for fertilization in orchard;Yang Z;Transactions of the CSAE,2013

5. Combining infiltration holes and level ditches to enhance the soil water and nutrient pools for semi-arid slope shrubland revegetation;Wang K;Science of The Total Environment,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3