Expression of SARS-CoV-2 entry molecules ACE2, NRP1, TMPRSS2, and FURIN in the reproductive tissues of male macaques

Author:

Moriyama Ryutaro1,Nakamura Sho2,Mitsui Ikki3,Sugiyama Makoto4,Fukui Hirotaka5,Fukui Hitomi5,Hagiwara Teruki1,Suzuki Juri6

Affiliation:

1. Kindai University

2. Nagoya University

3. Okayama University of Science

4. Kitasato University School of Veterinary Medicine

5. Fukui Veterinary Hospital

6. Kyoto University

Abstract

Abstract Coronavirus disease 2019 (COVID-19) reportedly affects male reproductive function by causing spermatogenesis dysfunction and suppressing testosterone secretion. However, the relationship between COVID-19 and impaired reproductive function, such as whether these effects on reproductive function are a direct effect of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in male reproductive organs or an indirect effect of high fever. Here, we examined whether the cell entry molecules of SARS-CoV-2, namely, ACE2, NRP1, TMPRSS2, and FURIN, are expressed in the male reproductive organs using the testes and accessory gonads of macaques during the breeding season. RT-PCR expression analysis showed that the testes alone expressed all four molecules. Immunohistochemical staining of testis tissue sections revealed that ACE2 is expressed in Leydig cells and the apical region of Sertoli cells, whereas NRP1 is expressed in the cell bodies surrounding the Leydig and Sertoli cell nuclei. FURIN is mainly expressed in Leydig cells, secondary spermatocytes, and spermatids. However, TMPRSS2 immunopositive cells were not observed. Therefore, it was not possible to observe cells expressing all four molecules in the gonads and accessory gonads of male primates. These results suggest that SARS-CoV-2 is unlikely to directly affect spermatogenesis in primates or proliferate in cells of the seminiferous tubules and undergo release into the semen through the previously known ACE2-mediated infection route. However, the expression of three molecules, including ACE2, was observed in Leydig cells, suggesting that testosterone synthesis and secretion may be affected when primates, including humans, are infected with SARS-CoV-2.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3