Affiliation:
1. Thapar Institute of Engineering and Technology
2. Banaras Hindu University
Abstract
Abstract
This paper compares four prediction methods namely Random Forest Regressor (RFR), SARIMAX, Holt-Winters (H-W), and the Support Vector Regression (SVR) to forecast the total CO2 emission from the paddy crop in India. The major objective of this study is to compare these four models to suggest an effective model to predict the total CO2 emission. Data from 1961 to 2018 has been categorised into two parts: training and test data. The study forecasts total CO2 emission from paddy crop in India from 2019 to 2025. A comparison of mean absolute percentage error (MAPE) and the mean square error (MSE), highlights the differences in accuracy among the four models. The mean absolute percentage error (MAPE) and the mean square error (MSE) for the four methods are: RFR (MAPE: 5.67; MSE: 549900.02), SARIMAX (MAPE:1.67; MSE:70422.35), H-W (MAPE:0.75; MSE:16648.58), and SVR (MAPE: 0.91; MSE: 17832.4). The values of MAPE and MSE with the Holt-Winters (H-W) and the Support Vector Regression (SVR) is relatively low as compared to SARIMAX and RFR. On the basis of these results, it can be inferred that H-W and SVR were found suitable models to forecast the total CO2 emission from paddy crop. Holt-Winters the model predicted 14364.97 for the year 2025 and SVR predicted 13696.67 for the year 2025. These predictions can be used by the decision-maker to build a suitable policy for future studies. For further research, this approach can be contrasted with other approaches, such as the Neural Network or other forecasting methods, using more important datasets to train the model to achieve better forecast accuracy.
Publisher
Research Square Platform LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献