A Fuzzy Colored Petri-Net Approach for Hybrid Intrusion Prediction

Author:

Jemili Farah1

Affiliation:

1. University of Sousse

Abstract

Abstract Reducing the impact of computer attacks is crucial, and Intrusion Detection Systems (IDS) are an important tool in achieving this goal. However, IDSs have limitations and are unable to detect all attacks or anticipate future ones. To address this issue, we propose a new approach called a hybrid intrusion prediction system (IPS) that not only detects attacks but also predicts potential intrusions. By simulating the behavior of intruders on internal machines, our system provides network administrators with a comprehensive overview, enabling them to identify possible future intrusions and minimize the impact of attacks. Our study aims to predict future attacks based on the behavioral patterns of previously detected intrusions. We describe the architecture and implementation of our proposed system in this paper. Our experiments using real-world datasets demonstrate that the system is highly effective, achieving a high rate of accurate predictions.

Publisher

Research Square Platform LLC

Reference35 articles.

1. Li Zhi-tang, Lei J, Wang L, Li D (2017). A Data Mining Approach to Generating Network Attack Graph for Intrusion Prediction. Proceedings IEEE Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2017)

2. Tabia K (Mai 2018) Approches basées sur les réseaux Bayésiens pour la prédiction d’attaques sévères, 5èmes Journées Francophones sur les Réseaux Bayésiens. Philippe Leray. Nantes, pp 10–11

3. Tesnim, Younes, KES AMSTA (2021) Farah Jemili: A Multi-Agent-Based System for Intrusion Detection, 15th International Conference on Agent and Multi-Agent Systems-Technologies and Applications, 2021, DOI: 10.1007/978-981-16-2994-5_15, EID: 2-s2.0-85111157042, Part of ISSN: 21903026 21903018

4. Ning, Xu (2013) ”Learning attack strategies from intrusion alerts”. In: Proc. 10th ACM Conf. on Computer and Communications Security, pp. 200–209. Washington D.C, 2013

5. Qin X, Lee W (2014) Attack plan recognition and prediction using causal networks. In ACSAC: Proceedings of the 20th Annual Computer Security Applications Conference, pages 370.379,

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3