The Effect of Turbulence Modelling on the Assessment of Platelet Activation

Author:

Bozzi Silvia1,Dominissini Davide1,Redaelli Alberto1,Passoni Giuseppe1

Affiliation:

1. Polytechnic University of Milan

Abstract

Abstract Pathological platelet activation induced by abnormal shear stresses is regarded as a main clinical complication in recipients of cardiovascular biomedical implantable devices and prostheses. In order to improve their performance computational fluid dynamics (CFD) has been used to evaluate flow fields and related shear stresses. More recently CFD models have been equipped with mathematical models that describe the relation between fluid dynamics variables, and in particular shear stresses, and the platelet activation state (PAS). These mathematical models typically use a Lagrangian approach to extract the shear stresses along possible platelet trajectories. However, in the case of turbulent flow, the choice of the proper turbulence closure model is still debated for both concerning its effect on Lagrangian statistics and shear stress calculation. In our study five numerical simulations of the flow through a mechanical heart valve were performed and then compared in terms of Eulerian and Lagrangian quantities: a direct numerical simulation (DNS), a large eddy simulation (LES), two Reynolds-averaged Navier-Stokes (RANS) simulations (SST k-ω and RSM) and a “Laminar” (no turbulence modelling on a Taylor microscale-based grid) simulation. Results exhibit a large variability in the PAS assessment depending on the turbulence model adopted. “Laminar” and RSM estimates of platelet activation are about 60% below DNS, while LES is 16% less. Surprisingly, PAS estimated from the SST k-ω velocity field is only 8% less than from DNS data. This appears more artificial than physical as can be inferred after comparing frequency distributions of PAS and of the different Lagrangian variables of the mechano-biological model of platelet activation. Our study indicates that turbulence closures can lead to a severe underestimation of platelet activation and suggests that turbulence should be fully resolved by DNS when assessing blood damage in blood contacting devices.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3