Quasi-dynamic opposite learning enhanced Runge-Kutta optimizer for solving complex optimization problems

Author:

Turgut Oguz Emrah1,Turgut Mert Sinan2

Affiliation:

1. İzmir Bakırçay University

2. Ege University

Abstract

Abstract The Runge-Kutta Optimization (RUNGE) algorithm is a recently proposed metaphor-free metaheuristic optimizer borrowing practical mathematical foundations of the famous Runge-Kutta differential equation solver. Despite its relatively new emergence, this algorithm has several applications in various branches of scientific fields. However, there is still much room for improvement as it suffers from premature convergence resulting from inefficient search space exploration. To overcome this algorithmic drawback, this research study proposes a brand-new quasi-dynamic opposition-based learning (QDOPP) mechanism to be implemented in a standard Runge-Kutta optimizer to eliminate the local minimum points over the search space. Enhancing the asymmetric search hyperspace by taking advantage of various positions of the current solution within the domain is the critical novelty to enrich general diversity in the population, significantly improving the algorithm's overall exploration capability. To validate the effectivity of the proposed RUNGE-QDOPP method, thirty-four multidimensional optimization benchmark problems comprised of unimodal and multimodal test functions with various dimensionalities have been solved, and the corresponding results are compared against the predictions obtained from the other opposition-based learning variants as well as some state-of-art literature optimizers. Furthermore, six constrained engineering design problems with different functional characteristics have been solved, and the respective results are benchmarked against those obtained for the well-known optimizers. Comparison of the solution outcomes with literature optimizers for constrained and unconstrained test problems reveals that the proposed QDOPP has significant advantages over its counterparts regarding solution accuracy and efficiency.

Publisher

Research Square Platform LLC

Reference55 articles.

1. Luenberger DG (1984) Linear and Nonlinear Programming, Second, Addison-Wesley

2. Equilibrium optimizer: A novel optimization algorithm;Faramarzi A;Knowl-Based Systems,2020

3. Intelligent intersection for delay optimization: Using metaheuristic search algorithms;Jamal A;Sustainability,2020

4. Mitchell M (1996) An introduction to Genetic Algorithms. MIT Press, Cambridge

5. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces;Storn R;J Glob Optim,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3