“Zero change” platform for monolithic back-end-of-line integration of phase change materials in silicon photonics

Author:

Lin Hongtao1ORCID,Wei Maoliang1,Xu Kai1,Tang Bo2,Li Junying3ORCID,Yun Yiting1,Zhang Peng4,Wu Yingchun5,Bao Kangjian5,Lei Kunhao1,Chen Zequn5,Ma Hui1,Sun Chunlei5,Liu Ruonan4,Li Ming6ORCID,Li Lan5ORCID

Affiliation:

1. Zhejiang University

2. Institute of Microelectronics, Chinese Academy of Sciences

3. Hangzhou Institute for Advanced Study, UCAS

4. Institute of Microelectronics of the Chinese Academy of Sciences

5. Westlake University

6. Institute of Semiconductors, CAS

Abstract

Abstract Monolithic integration of novel materials for unprecedented device functions without modifying the existing photonic component library is the key to advancing heterogeneous silicon photonic integrated circuits. To achieve this, the introduction of a silicon nitride etching stop layer at selective area, coupled with low-loss oxide trench to waveguide surface, enables the incorporation of various functional materials without disrupting the reliability of foundry-verified devices. As an illustration, two distinct chalcogenide phase change materials (PCM) with remarkable nonvolatile modulation capabilities, namely Sb2Se3 and Ge2Sb2Se4Te1, were monolithic back-end-of-line integrated into silicon photonics. The PCM enables compact phase and intensity tuning units with zero-static power consumption. Taking advantage of these building blocks, the phase error of a push-pull Mach-Zehnder interferometer optical switch could be trimmed by a nonvolatile phase shifter with a 48% peak power consumption reduction. Mirco-ring filters with a rejection ratio >25dB could be applied for >5-bit wavelength selective intensity modulation, and waveguide-based >7-bit intensity-modulation photonic attenuators could achieve >39dB broadband attenuation. The advanced “Zero change” back-end-of-line integration platform could not only facilitate the integration of PCMs for integrated reconfigurable photonics but also open up the possibilities for integrating other excellent optoelectronic materials in the future silicon photonic process design kits.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3