Convection-permitting climate models offer more certain extreme rainfall projections

Author:

Fosser Giorgia1ORCID,Gaetani MarcoORCID,Kendon Elizabeth2ORCID,Adinolfi Marianna3,Ban Nikolina4,Belušić Danijel5,Caillaud Cécile6,Careto João7,Coppola Erika8,Demory Marie-Estelle9ORCID,de Vries Hylke10,Dobler Andreas11ORCID,Feldmann Hendrik12,Goergen Klaus13,Lenderink Geert14ORCID,Pichelli Emanuela15,Schaer Christoph16ORCID,Soares Pedro7,Somot Samuel17,Tölle Merja18

Affiliation:

1. University School for Advanced Studies IUSS

2. Met Office

3. CMCC Foundation - Euro-Mediterranean Center on Climate Change

4. University of Innsbruck

5. University of Zagreb and Swedish Meteorological and Hydrological Institute

6. Université de Toulouse, Météo-France, CNRS

7. University of Lisbon

8. International Centre for Theoretical Physics, Trieste, I-34151, Italy

9. Institute for Atmospheric and Climate Science, ETH Zürich, and Wyss Academy for Nature, and Climate and Environmental Physics and Oeschger Centre for Climate Change Research, University of Be

10. Royal Netherlands Meteorological Institute KNMI

11. Norwegian Meteorological Institute

12. Karlsruhe Institute of Technology

13. Institute of Bio- and Geosciences (IBG-3, Agrosphere), Research Centre Juelich

14. KNMI - Royal Netherlands Meteorological Institute

15. The Abdus Salam International Centre for Theoretical Physics (ICTP)

16. ETH Zurich

17. Meteo France

18. Universität Kassel, Kassel Institute for Sustainability

Abstract

Abstract Extreme precipitation events leads to dramatic impacts on society and the situation will worsen under climate change1. Decision-makers need reliable estimates of future changes as a basis for effective adaptation strategies, but projections at local scale from regional climate models (RCMs) are highly uncertain2. Here we exploit the first km-scale convection-permitting model (CPM) ensemble to provide new understanding of the changes in local precipitation extremes and related uncertainties over the greater Alpine region. The CPM ensemble shows a stronger increase in the frequency and intensity of extreme events than the driving RCM ensemble, during the summer when convection dominates. We find that the CPM ensemble substantially reduces the model uncertainties and their contribution to the total uncertainties of more than 50%. We conclude that the more realistic representation of local dynamical processes in the CPMs provides more reliable and less uncertain local estimates of change essential for policymakers.

Publisher

Research Square Platform LLC

Reference39 articles.

1. IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press).

2. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges;Prein AF;Rev. Geophys.,2015

3. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next?;Giorgi F;J. Geophys. Res. Atmos.,2019

4. Uses of Results of Regional Climate Model Experiments for Impacts and Adaptation Studies: the Example of NARCCAP;Mearns LO;Curr. Clim. Chang. Reports,2015

5. Boundary condition and oceanic impacts on the atmospheric water balance in limited area climate model ensembles;Goergen K;Sci. Rep.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3