A novel image encryption scheme combing optical chaos scrambling, DNA diffusion strategy and MOPSO algorithm

Author:

Xiao Tao1,Li Qiliang1,Bai Haoruo1

Affiliation:

1. Hangzhou Dianzi University

Abstract

Abstract A secure encryption scheme, combining multi-objective particle swarm optimization (MOPSO), optical chaos, and DNA algorithm is proposed and demonstrated. In this paper, a secure encryption and decryption architecture based on optical chaotic synchronization system with injection-locking is analyzed. We prove that a main laser (ML) can drive two-pair secondary lasers (TPSLs) to generate the synchronized optical chaos with high complexity. The system employs the XOR operation between the Hash value of the initial image and optimized value by MOPSO, which modulates the bias current of ML, thus TPSLs are driven to generate two pair synchronized chaotic sequences, which combine the Hash value of the initial image to generate two keys through a certain algorithm. Furthermore, two keys are used to scramble the pixel positions of the image and diffuse image pixels through DNA rules, and then in receiving end, two same keys are used to unscramble and reversely diffusethe encrypted image. Besides modulating the bias current of ML, the other aim of MOPSO is to optimize the entropy of the encrypted image and the correlation between the adjacent pixels. In order to ensure the recovery of real image, we compute and compare the digest-message of two pair synchronized chaotic sequences by using Hash algorithm in two ends before transmitting the encrypted image over optical fiber link. By synchronizing with the lasers at the sending end, we obtained two same keys to decrypt the ciphertext image in the receiving end. The simulation results show that this scheme can achieve secure communication of image against various attacks by analyzing and testing the security of the encrypted image.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3