Detection Algorithms for Gastrointestinal Perforation Cases in the Medical Information Database Network (MID-NETⓇ) in Japan

Author:

Tanigawa Masatoshi1ORCID,Kohama Mei2,Hirata Kaori2,Izukura Rieko3,Kandabashi Tadashi4,Kataoka Yoko1,Nakashima Naoki4,Kimura Michio5,Uyama Yoshiaki2,Yokoi Hideto1

Affiliation:

1. Kagawa University Hospital: Kagawa Daigaku Igakubu Fuzoku Byoin

2. Pharmaceutical and Medical Devices Agency

3. Kyushu University

4. Kyushu University Hospital

5. Hamamatsu University Hospital

Abstract

Abstract Background The Medical Information Database Network (MID-NET®) in Japan is a vast repository providing an essential pharmacovigilance tool. Gastrointestinal perforation (GIP) is a critical adverse drug event, yet no well-established GIP identification algorithm exists in MID-NET®.Methods This study evaluated 12 identification algorithms by combining ICD-10 codes with GIP therapeutic procedures. Two sites contributed 200 inpatients with GIP-suggestive ICD-10 codes (100 inpatients each), while a third site contributed 165 inpatients with GIP-suggestive ICD-10 codes and antimicrobial prescriptions. The positive predictive values (PPVs) of the algorithms were determined, and the relative sensitivity (rSn) among the 165 inpatients at the third institution was evaluated.Results A trade-off between PPV and rSn was observed. For instance, ICD-10 code-based definitions yielded PPVs of 59.5%, whereas ICD-10 codes with CT scan and antimicrobial information gave PPVs of 56.0% and an rSn of 97.0%, and ICD-10 codes with CT scan and antimicrobial information as well as three types of operation codes produced PPVs of 84.2% and an rSn of 24.2%. The same algorithms produced statistically significant differences in PPVs among the three institutions. Combining diagnostic and procedure codes improved the PPVs. The algorithm combining ICD-10 codes with CT scan and antimicrobial information and 80 different operation codes offered the optimal balance (PPV: 61.6%, rSn: 92.4%).Conclusion This study developed valuable GIP identification algorithms for MID-NET🄬, revealing the trade-offs between accuracy and sensitivity. The algorithm with the most reasonable balance was determined. These findings enhance pharmacovigilance efforts and facilitate further research to optimize adverse event detection algorithms.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3