Affiliation:
1. Kagawa University Hospital: Kagawa Daigaku Igakubu Fuzoku Byoin
2. Pharmaceutical and Medical Devices Agency
3. Kyushu University
4. Kyushu University Hospital
5. Hamamatsu University Hospital
Abstract
Abstract
Background The Medical Information Database Network (MID-NET®) in Japan is a vast repository providing an essential pharmacovigilance tool. Gastrointestinal perforation (GIP) is a critical adverse drug event, yet no well-established GIP identification algorithm exists in MID-NET®.Methods This study evaluated 12 identification algorithms by combining ICD-10 codes with GIP therapeutic procedures. Two sites contributed 200 inpatients with GIP-suggestive ICD-10 codes (100 inpatients each), while a third site contributed 165 inpatients with GIP-suggestive ICD-10 codes and antimicrobial prescriptions. The positive predictive values (PPVs) of the algorithms were determined, and the relative sensitivity (rSn) among the 165 inpatients at the third institution was evaluated.Results A trade-off between PPV and rSn was observed. For instance, ICD-10 code-based definitions yielded PPVs of 59.5%, whereas ICD-10 codes with CT scan and antimicrobial information gave PPVs of 56.0% and an rSn of 97.0%, and ICD-10 codes with CT scan and antimicrobial information as well as three types of operation codes produced PPVs of 84.2% and an rSn of 24.2%. The same algorithms produced statistically significant differences in PPVs among the three institutions. Combining diagnostic and procedure codes improved the PPVs. The algorithm combining ICD-10 codes with CT scan and antimicrobial information and 80 different operation codes offered the optimal balance (PPV: 61.6%, rSn: 92.4%).Conclusion This study developed valuable GIP identification algorithms for MID-NET🄬, revealing the trade-offs between accuracy and sensitivity. The algorithm with the most reasonable balance was determined. These findings enhance pharmacovigilance efforts and facilitate further research to optimize adverse event detection algorithms.
Publisher
Research Square Platform LLC