Identification of key genes of anti-programmed death ligand 1 for meningioma immunotherapy by bioinformatic analysis

Author:

Zhang Lijian1ORCID,Wang Luxuan2,Tan Yanli2,Li Chunhui2,Fang Chuan2

Affiliation:

1. Postdoctoral researcher at Affiliated Hospital of Hebei University, Hebei University

2. Affiliated Hospital of Hebei University

Abstract

Abstract Meningioma is one of the most common primary tumors in the central nervous system (CNS). A deeper understanding of its molecular characterization could provide potential therapeutic targets to reduce recurrence. In this study, we attempted to identify specific gene mutations in meningioma for immunotherapy. One GSE43290 dataset was obtained from the Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs) between meningioma tissues and normal meninges. In total, 420 DEGs were identified, including 15 up-regulated and 405 down-regulated genes. Functional enrichment analysis showed that these DEGs were mainly enriched in PI3K-Akt signaling pathway, Focal adhesion, and MAPK signaling pathway. We identified 20 hub genes by protein-protein interaction (PPI) analysis. Among the hub genes, the expression of FLT1, CXCL8, JUN, THBS1, FECAM1, CD34, and FGF13 were negatively correlated with Programmed Death Ligand-1 (PD-L1). Additionally, the expression of those genes was co-regulated by miR-155‐5p. The findings suggest that miR-155-5p play an important role in the pathogenesis of meningioma and may represent potential therapeutic targets for its anti-PD-L1 immunotherapy.

Publisher

Research Square Platform LLC

Reference45 articles.

1. Epidemiology of meningiomas;Baldi I;Neurochirurgie,2018

2. EANO guidelines for the diagnosis and treatment of meningiomas;Goldbrunner R;Lancet Oncol,2016

3. What is its role in meningioma?;Sherman WJ;Expert Rev Neurother,2012

4. Advances in meningioma genetics: novel therapeutic opportunities;Preusser M;Nat Rev Neurol,2018

5. Associations of meningioma molecular subgroup and tumor recurrence;Youngblood MW;Neuro Oncol,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3