M2 macrophage-derived exosomes carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1

Author:

Huang Chong1,Zhao Lu2,Xiao Yun3,Tang Zihao2,Li Jing2,Guo Kai2,Tian Lei2,Zong Chunlin2

Affiliation:

1. Northwest University

2. School of Stomatology, the Fourth Military Medical University

3. Jiamusi University

Abstract

Abstract Purpose Radiotherapy is essential to cancer treatment, while it inevitably injures the surrounding normal tissues, and bone tissue is one of the most common sites prone to irradiation. Bone marrow mesenchymal stem cells (BMMSCs) are sensitive to irradiation and the irradiated dysfunction of BMMSCs may be closely related to irradiation-induced bone damage. Macropahges paly important role in stem cell function regulation, bone metabolic balance and irradiation response, but the effects of macrophages on irradiated BMMSCs are still unclear. This study aimed to investigate the role of macrophages and macrophage-derived exosomes in restoring irradiated BMMSCs function. Methods The effects of macrophage conditioned medium (CM) and macrophage-derived exosomes on osteogenic and fibrogenic differentiation capacities of irradiated BMMSCs were detected. The key microribonucleic acids (miRNAs) and targeted proteins in macrophage-derived exosomes were also determined. Results The results showed that X-ray irradiation significantly inhibited the proliferation of BMMSCs. Additionally, it caused a differentiation imbalance of BMMSCs, with decreased osteogenic differentiation and increased fibrogenic differentiation. M2 macrophage-derived exosomes (M2D-exos) inhibited the fibrogenic differentiation and promoted the osteogenic differentiation of irradiated BMMSCs. We identified that miR-142-3p was significantly overexpressed in M2D-exos and irradiated BMMSCs treated with M2D-exos. After inhibition of miR-142-3p in M2 macrophage, the effects of M2D-exos on irradiated BMMSCs differentiation were eliminated. Furthermore, transforming growth factor beta 1 (TGF-β1), as a direct target of miR-142-3p, was significantly decreased in irradiated BMMSCs treated by M2D-exos. Conclusion This study indicated that M2D-exos could carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1. These findings pave the way for a new, promising, and cell-free therapeutic method to treat radiation-induced bone damage.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3