Degradation of direct black 22 textile dye using the photo-Fenton and electro-Fenton processes: a comparative study

Author:

Santana Ingrid L. da S.1,Silva Marina G.1,Ourem Gabriel P.1,Neves Naiana S. da C. S.1,Cavalcanti Vanessa de O. M.1,Lucena Alex L. de A.1,Duarte Marta M. M. B.1,Napoleão Daniella Carla1ORCID

Affiliation:

1. Universidade Federal de Pernambuco

Abstract

Abstract The dyes present in textile effluents have a complex structure and low biodegradability, making it necessary to use efficient treatments such as advanced oxidation processes (AOP). The aim of this study was to compare the efficiency of photo-Fenton (PF) and electro-Fenton (EF) AOPs in the degradation of direct black dye 22 (PD22), defining the best experimental conditions and evaluating the kinetics and toxicity of the proposed treatments. Initially, for the PF system, using UV-C and sunlight radiation, 99.08% and 99.98% degradations were reached, respectively for [H2O2] = 20 mg·L− 1 and [Fe] = 1.0 mg·L− 1. From the volume variation study, it was observed that the increase in volume did not compromise the degradation of the dye. For the EF process, the [Fe] that promoted the highest percentage of degradation (95.16%) was equal to 1 mg·L− 1. The volume study for the EF process also did not interfere significantly in the efficiency of the process. The PF and EF systems presented satisfactory adjustments to the proposed kinetic models, suggesting that the treatment follows a pseudo-first-order kinetics. The ecotoxicological tests showed no toxicity for the thyme seed after using the EF process. Therefore, it is evident that different AOP techniques can be applied in the treatment of PD22.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3