Effect of welding heat input conditions on the dynamic behavior of pulse laser beam welding molten pool for Ti6Al4V thin plate with clearance

Author:

Kong Bin,Wei Yanhong,Tang Fengye,Chang Yiting,Chen Jicheng1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics

Abstract

Abstract For a practical pulse laser beam welding (PLBW) process of metal sheets assembled in butt joint configuration, the precise control of the assembling clearance has been a challenge. The existence of machining burrs and assembly errors will lead to forming severe defects, such as misalignment, welding leakage, and penetrating. In this paper, a pair of Ti6Al4V plates with a 0.2 mm air gap was tested by an improved PLBW process. A three-dimensional multi-phase and multi-physical field coupling model of Ti6Al4V alloy plate with a reserved air gap was established according to the weld profile, and the dynamic behavior of the keyhole and molten pool was simulated. Transient temperature field, velocity field, keyhole size, and liquid bridge connection were calculated by using different welding heat input parameters. The results showed that the weld profile simulated by the CFD model is in good agreement with the experimental results, and the deviation is between 0.68% and 7.95%. After the laser power reaches the peak value, the metal steam eruption weakens and the obvious Marangoni vortex appears in the molten pool. The simulated keyhole is always in three stages, that is, the keyhole appears, and then gradually forms the through-hole. The through hole keeps oscillating, and finally, the keyhole shrinks and disappears when the laser power drops to zero. With the increase of laser peak power, the keyhole shape becomes more curved, indicating that the keyhole oscillation is enhanced. With the increase in welding speed, the stability of the molten pool is improved, and the area of the liquid bridge rises more regularly.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3