Optimizing Police Patrol Beats: A Practical Framework for Enhanced Efficiency in Determining the Patrol Beat Borders Using the 'Need for Patrol Presence Score'

Author:

Buker Nicholas Hasan1,Buker Ihsan Eren2,Oswalt Jasmine1

Affiliation:

1. University of West Florida

2. University of Alabama at Birmingham

Abstract

Abstract

Preventive patrol, integral to modern policing since 1829, faces challenges in optimizing resource allocation. This manuscript proposes a practical strategy for redesigning patrol beats, ensuring balanced workloads and efficient response to calls. Unlike previous models, this approach, named "Need for Patrol Presence Score (NPPS)," integrates evidence-based policing, accounting for call types, priority levels, and risky locations. Using Computer Assisted Dispatch data, the model partitions the jurisdiction into beats, maintaining flexibility for dynamic policing needs. The study explores two beat design algorithms, demonstrating stability through Jaccard indices. Implementation can enhance police response, workload distribution, and community safety, providing a valuable tool for police departments seeking efficient patrol beat structures.

Publisher

Springer Science and Business Media LLC

Reference19 articles.

1. Challenges, Overcoming Strategies, and Possible Considerations for the Future Implementation of Workload-Based Police Patrol Staffing Analyses: A Methodological Commentary;Buker H,2022

2. Problem-oriented policing in violent crime places: a randomized controlled experiment;Braga AA,1999

3. Caplan,J. M.,&Kennedy,L. W.(2016).Risk terrain modeling: Crime prediction and risk reduction.Univ of California Press.

4. Data-Informed and place-based violent crime prevention: The Kansas City, Missouri risk-based policing initiative;Caplan JM,2021

5. Chaiken,J..1975. Patrol Allocation Methodology for Police Departments.SantaMonica,Calif.:Rand.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3