N-glycosylation of GSTO1 promotes cervical cancer migration and invasion through JAK/STAT3 pathway activation

Author:

Yu Panpan1,Zhao Zouyu1,Sun Qianyu1,Diao Bowen1,Sun Chongfeng1,Wang Yan1,Qiao Hui1,Li Hong1,Yang Ping1

Affiliation:

1. First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China

Abstract

Abstract

Background Protein glycosylation is strongly associated with tumor progression. Glutathione S-transferase omega 1 (GSTO1) is a member of the glutathione S-transferase family. The significance of GSTO1 N-glycosylation in the progression of cervical cancer (CC) has remained elusive. In this study, we investigated the functional significance of GSTO1 N-glycosylation in CC progression. Methods We employed immunohistochemistry to detect the relative expression of evaluating the link between GSTO1 in CC and benign tissues and the overall survival (OS) and progression-free survival (PFS) in CC patients. In vitro and in vivo experiments to detect CC cell proliferation or metastatic ability after GSTO1 downregulation. NetNGly1.0 Server database predicts potential N-glycosylation modification sites of GSTO1 (Asn55, Asn135, Asn190). Investigating GSTO1 N-glycosylation's function in cellular migration, invasion and epithelial–mesenchymal transition (EMT), we mutated the N-glycosylation sites of GSTO1 through lentivirus-based insertional mutagenesis. Detection of signalling pathways associated with N-glycosylation-modified GSTO1 by enrichment analysis and Western blot. Results Compared to normal cervical tissue, CC tissue showed significantly higher GSTO1 expression. Further, high GSTO1 levels were a poor predictor of OS and PFS. Both cell and animal experiments suggested that down-regulation of GSTO1 inhibited cell proliferation and metastasis. Glycosylation modification of targeted mutant GSTO1 at positions 55, 135 and 190 significantly inhibits migration and invasion of CC cells. GSTO1 N-glycosylation fixed point mutation inhibits EMT process in CC cells. Mechanistically, N-glycosylated GSTO1 promoted the expression of JAK/STAT3 pathway related markers. Conclusions GSTO1 N-glycosylation is associated with CC progression and may promote EMT via JAK/STAT3 signaling.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3