Agreement and Precision of Wide and Cube Scan Measurements between Swept-source and Spectral-domain OCT in Normal and Glaucoma Eyes

Author:

Hou Huiyuan1,EI-Nimri Nevin W.1,Durbin Mary K.1,Arias Juan D.1,Moghimi Sasan2,Weinreb Robert N.2

Affiliation:

1. Topcon Healthcare

2. Shiley Eye Institute, University of California

Abstract

Abstract This study aimed to evaluate agreement of Wide scan measurements from swept-source optical coherence tomography(SS-OCT) Triton and spectral-domain OCT(SD-OCT) Maestro in normal/glaucoma eyes, and to assess the precision of measurements from Wide and Cube scans of both devices. Three Triton and three Maestro operator/device configurations were created by pairing three operators, with study eye and testing order randomized. Three scans were captured for Wide (12mm×9mm), Macular Cube (7mmx7mm–Triton; 6mmx6mm-Maestro), and Optic Disc Cube (6mmx6mm) scans for 25 normal eyes and 25 glaucoma eyes. Thickness of circumpapillary retinal nerve fiber layer(cpRNFL), ganglion cell layer+inner plexiform layer(GCL+), and ganglion cell complex(GCL++) was obtained from each scan. A two-way random effect analysis of variance model was used to estimate the repeatability and reproducibility; agreement was evaluated by Bland-Altman analysis and Deming regression. Precision limit estimates were low: <5µm for macular and <10µm for optic disc parameters. Precision for Wide and Cube scans of both devices were comparablein both groups. Excellent agreement between the two devices was found for Wide scans, with the mean difference<3µm across all measurements (cpRNFL<3µm, GCL+<2µm, GCL++<1µm), indicating interoperability. A single Wide scan covering the peripapillary and macular regions may be useful for glaucoma management.

Publisher

Research Square Platform LLC

Reference28 articles.

1. The Pathophysiology and Treatment of Glaucoma: A Review;Weinreb RN;JAMA,2014

2. Detecting glaucoma with only OCT: Implications for the clinic, research, screening, and AI development. (2022).

3. Topography of ganglion cells in human retina;Curcio CA;J. Comp. Neurol.,1990

4. Glaucomatous damage of the macula;Hood DC;Progress in Retinal and Eye Research,2013

5. Prevalence and Nature of Early Glaucomatous Defects in the Central 10° of the Visual Field;Traynis I;JAMA Ophthalmol,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3