High-Protein Supplementation and Neuromuscular Electric Stimulation after Aneurysmal Subarachnoid Hemorrhage Increases Systemic Amino Acid and Oxidative Metabolism: A Plasma Metabolomics Approach

Author:

Gusdon Aaron M1ORCID,Savarraj Jude PJ2,Feng Dians2,Starkman Adam3,Li Guoyan3,Bodanapally Uttam3,Zimmerman William Denny3,Ryan Alice S3,Choi Huimahn A2,Badjatia Neeraj3ORCID

Affiliation:

1. University of Texas John P and Katherine G McGovern Medical School

2. University of Texas John P and Katherine G McGovern Medical School: The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School

3. University of Maryland Hospital: University of Maryland Medical Center

Abstract

Abstract Background The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve functional outcomes after aSAH. Using an untargeted metabolomics approach, we sought to identify specific metabolites mediating these effects. Methods Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N=12) or HPRO+NMES (N=12) and at 7 days as part of the INSPIRE protocol. Untargeted metabolomics were performed for each plasma sample. Paired fold changes were calculated for each metabolite among subjects in the HPRO+NMES group at baseline and 7 days after intervention. Changes in metabolites from baseline to 7 days were compared for the HPRO+NMES and SOC groups. Sparse partial least squared discriminant analysis (sPLS-DA) identified metabolites discriminating each group. Pearson’s correlation coefficients were calculated between each metabolite and total protein per day, nitrogen balance, and muscle volume Multivariable models were developed to determine associations between each metabolite and muscle volume. Results A total of 18 unique metabolites were identified including pre and post treatment and differentiating SOC vs HPRO+NMES. Of these, 9 had significant positive correlations with protein intake: N-acetylserine (ρ=0.61, P=1.56x10-3), N-acetylleucine (ρ=0.58, P=2.97x10-3), β-hydroxyisovaleroylcarnitine (ρ=0.53, P=8.35x10-3), tiglyl carnitine (ρ=0.48, P=0.0168), N-acetylisoleucine (ρ=0.48, P=0.0183), N-acetylthreonine (ρ=0.47, P=0.0218), N-acetylkynurenine (ρ=0.45, P=0.0263), N-acetylvaline (ρ=0.44, P=0.0306), and urea (ρ=0.43, P=0.0381). In multivariable regression models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95%CI 1.01, 1.16)] and quadricep [OR 1.08 (95%CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95%CI 1.01, 1.09)] and quadricep [OR 1.04 (95%CI 1.00, 1.07)] muscle volume. N-acetylserine, N-acetylcitrulline, and b-hydroxyisovaleroylcarnitine were also associated with preserved temporalis or quadricep volume. Conclusions Metabolites defining the HPRO+NMES intervention mainly consisted of amino acid derivatives. These metabolites had strong correlations with protein intake and were associated with preserved muscle volume.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3