Oxidation towards enrofloxacin degradation over nanoscale zero-valent copper: Mechanism and products

Author:

Gong Zhiqiang1,Xie Junpu1,Liu Jingxin1,Liu Ting2,Chen Jianwu2,Li Jinping1,Gan Jinhua2

Affiliation:

1. Wuhan Textile University

2. Yangtze River Fisheries Research Institute Chinese Academy of Fishery Sciences

Abstract

Abstract Enrofloxacin (ENR) is a widely used veterinary fluoroquinolone antibiotic and is frequently detected in water environments. The degradation of ENR was examined utilizing molecular oxygen mediation using nanometer zero-valent copper (nZVC) as the catalyst in this work. The dosage of nZVC, initial pH, and reaction temperature were investigated as contributing factors to ENR degradation. The reactive oxygen species (ROS) that participated in the reaction were identified, their generation mechanisms were elucidated, and the effects on ENR degradation were assessed. More emphasis was given to exploring ENR degradation and transformation pathways via analyses of HPLC-TOF-MS. Data showed that at 35 ℃, with an initial pH of 3 and exposed to air, an nZVC dose of 0.5 g·L− 1 degraded ENR by 99.51% dramatically. HO radicals were identified as the dominant ROS, and conversions among Cu0, Cu+, and Cu2+ played crucial roles in the generation of ROS. The destruction mechanism of ENR was speculated based on analyses of HPLC-TOF-MS results as the transformation of the piperazine ring into an oxidized state with a -COOH substitution with HO, which caused ENR to be mineralized and converted into CO2, H2O, and \({\text{NO}}_{\text{3}}^{\text{-}}\). This research proposes a capable and practical method for removing ENR from water.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3