Abstract
Sorghum aphids, Melanaphis sorghi (Theobald) became a major economic concern in sorghum causing 70% yield loss without timely insecticide applications. The overarching goal is to develop a monitoring system for sorghum aphids using remote sensing technologies to detect changes in plant-aphid density interactions. We studied the effect of aphid density on sorghum spectral responses near the feeding site and on distal leaves from infestation and quantified potential systemic effects to determine if aphid feeding can be detected. A leaf spectrometer at 400–1000 nm range was used to measure reflectance changes by varying levels of sorghum aphid density on lower leaves and those distant to the caged infestation. Our study results demonstrate that sorghum aphid infestation can be determined by changes in reflected light, especially between the green-red range (550–650 nm), and sorghum plants respond systemically. This study serves as an essential first step in developing more effective pest monitoring systems for sorghum aphids, as leaf reflection sensors can be used to identify aphid feeding regardless of infestation location on the plant. Future research should address whether such reflectance signatures can be detected autonomously using small unmanned aircraft systems or sUAS equipped with comparable sensor technologies.