High-mannose glycosylation of ITGAM regulates the development and differentiation of trophoblast in the placenta

Author:

Cui Xinyuan1,Wang Hao1,Pei Xiaosong1,Li Yaqi1,Qin Huamin2,Bi Jianlei2,Liu Shuai1ORCID,Yan Qiu1

Affiliation:

1. Dalian Medical University

2. The Second Hospital of Dalian Medical University

Abstract

Abstract Background Development of placenta and differentiation of trophoblast is a hallmark event for successful pregnancy. Trophoblast stem (TS) cells proliferate and differentiate into TS-like cytotrophoblasts (CTBs), further formulate the differentiated subtypes, syncytiotrophoblasts (STBs) and invasive extravillous tropholoblasts (EVTs). Defective differentiation of TS-like CTBs is associated with severe gestational diseases. Protein glycosylation is an essential form of posttranslational modification. However, glycosylation-related mechanism controlling TS-like CTBs differentiation remains unknown. This study aims to investigate the function of high-mannose type glycans and ALG3 on TS-like CTBs differentiation. Furthermore, the mechanism of high-mannose and ITGAM during TS-like CTBs differentiation were explored.Methods Employing lectin microarray, the glycosylation expression traits were compared in the villi of miscarriage patients and healthy women. The expression of high-mannose and ALG3 were investigated by immunoblotting and immunofluorescence assays. The glycosylation proteins were screened by pull down and LC-MS/MS detection. Signaling pathway were screened by the human phosphokinase antibody array. The differentiation of TS-like CTBs were measured by immunoblotting and immunofluorescence assays.Results Lectin microarray results revealed that increased level of high-mannose type glycans on the TS-like CTBs of miscarriage patients compared with normal pregnancy women. Meantime, ALG3 levels increased in TS-like CTBs of miscarriage patients. Upregulating high-mannose type glycans by ALG3 hampered TS-like CTBs differentiated into STBs and EVTs, and arrested TS-like CTBs in the property stage. Furthermore, high level of high-mannose type glycans on ITGAM inhibited the binding of ITGAM and Fn, inactivating the p-STAT1 signaling pathway, further inhibiting TS-like CTBs differentiation potential.Conclusions These findings reveal that high-mannose type glycans, especially on ITGAM, hampered binding of ITGAM and Fn, which leads to the impaired TS-like CTBs differentiation by p-STAT1 signaling pathway. The present study provides novel insight into the function and mechanism of α1,3-linked high-mannose type glycans in TS-like CTBs differentiation in human placenta, which can also be used as a glycol molecular target for the treatment of miscarriage.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3