T cell activation, immune synapse formation, and organ infiltration by leukemic T cells require cortactin

Author:

Castellanos-Martínez Ramón,León-Vega Iliana I.,Guerrero-Fonseca Idaira M.,Vargas-Robles Hilda,Jiménez-Camacho Karina E.,Hernández-Galicia Gabriela,Ortiz-Navarrete Vianney F.,Rottner Klemens,Medina-Contreras Oscar,Schnoor MichaelORCID

Abstract

Abstract T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is still fatal in many cases. T cell blasts are characterized by hyperactivation and strong proliferative and migratory capacities. The chemokine receptor CXCR4 is involved in mediating malignant T cell properties and cortactin has been shown to control CXCR4 surface localization in T-ALL cells. We have previously shown that cortactin overexpression is correlated with organ infiltration and relapse in B-ALL. However, the role of cortactin in T cell biology and T-ALL remains elusive. Here, we analyzed the functional relevance of cortactin for T cell activation and migration and the implications for T-ALL development. We found that cortactin is upregulated in response to TCR engagement and recruited to the immune synapse in normal T cells. Loss of cortactin caused reduced IL-2 production and proliferation. Cortactin-depleted T cells showed defects in immune synapse formation and migrated less due to impaired actin polymerization in response to TCR and CXCR4 stimulation. Leukemic T cells expressed much higher levels of cortactin compared to normal T cells that correlated with greater migratory capacity. Xenotransplantation assays in NSG mice revealed that cortactin-depleted human leukemic T cells colonized the bone marrow significantly less and failed to infiltrate the central nervous system suggesting that cortactin overexpression drives organ infiltration, which is a major complication of T-ALL relapse. Thus, cortactin could serve as a potential therapeutic target for T-ALL and other pathologies involving aberrant T cell responses.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3