Ensemblex: an accuracy-weighted ensemble genetic demultiplexing framework for population-scale scRNAseq sample pooling
Author:
Affiliation:
1. McGill University
2. Montreal Neurological Institute and Hospital
3. University Hospital of Zurich
Abstract
Multiplexing samples from distinct individuals prior to sequencing is a promising step toward achieving population-scale single-cell RNA sequencing by reducing the restrictive costs of the technology. Individual genetic demultiplexing tools resolve the donor-of-origin identity of pooled cells using natural genetic variation but present diminished accuracy on highly multiplexed experiments, impeding the analytic potential of the dataset. In response, we introduce Ensemblex: an accuracy-weighted, ensemble genetic demultiplexing framework that integrates four distinct algorithms to identify the most probable subject labels. Using computationally and experimentally pooled samples, we demonstrate Ensemblex’s superior accuracy and illustrate the implications of robust demultiplexing on biological analyses.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Transcriptomics of Human Brain Tissue in Parkinson's Disease: a Comparison of Bulk and Single-cell RNA Sequencing;Fiorini MR;Mol Neurobiol,2024
2. Genetic heterogeneity in Alzheimer disease and implications for treatment strategies;Ringman JM;Curr Neurol Neurosci Rep,2014
3. Using induced pluripotent stem cells derived neurons to model brain diseases;McKinney CE;Neural Regen Res,2017
4. Benchmarking single-cell hashtag oligo demultiplexing methods;Howitt G;NAR Genomics Bioinf,2023
5. Demuxalot: scaled up genetic demultiplexing for single-cell sequencing;Rogozhnikov A;bioRxiv
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3