5D Hindmarsh Rose neural network fast synchronization based on FPGA

Author:

Lin Lixiong1,Li Mingbao1

Affiliation:

1. Jimei University

Abstract

Abstract

In response to the difficulty of implementing chaotic systems on FPGA, a method for fast synchronization of 5D Hindmarsh Rose (5DHR) neural networks using FPGA is studied. Firstly, a system generator model is established in Simulink of Matlab and then transformed into an engineering project. Finally, it is debugged on Vivado and burned onto FPGA. The synchronization of two 5DHR neural networks is realized by giving full play to the high-speed parallel computing ability and powerful interface ability of FPGA. The experimental results show that the proposed algorithm is feasible.

Funder

Jimei University

Publisher

Springer Science and Business Media LLC

Reference20 articles.

1. FPGA implementation of memristive Hindmarsh–Rose neuron model: Low cost and high-performing through hybrid approximation;Sohrab M;AEUE-International J Electron Commun,2023

2. Dynamical behavior and network analysis of an extended Hindmarsh–Rose neuron model;Rajagopal K;Nonlinear Dyn,2019

3. Adaptive synchronization of two different uncertain chaotic systems with unknown dead-zone input nonlinearities;Heidarzadeh S;J Vib Control,2020

4. Lin L (2020) Predefined-time anti synchronization of two different chaotic neural networks. Complexity, 2020:7476250

5. Tian A, Fu C, Yau H-T, Su X-Y, Xiong H (2020) A new methodology of soil salinization degree classification by probability neural network model based on centroid of fractional Lorenz chaos self-synchronization error dynamics. IEEE Trans. Geosci. Remote Sens., 58:799–810, Feb. 2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3