Distinct contributions of microbial and plant residues to SOC during ecosystem primary succession in a Tibetan glacier foreland

Author:

Liu Yongqin1,Liu Yang,Ji Mukan,Li Saifei,Ao Deng,An Shaoshan2,Liang Chao3ORCID

Affiliation:

1. Lanzhou University

2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China

3. Institute of Applied Ecology

Abstract

Abstract

Soil organic carbon (SOC) rapidly accumulates during ecosystem primary succession in glacier foreland. This makes it an ideal model for studying soil carbon sequestration and stabilization, which are urgently needed to mitigate climate change. Here, we investigated SOC dynamics in the Kuoqionggangri glacier foreland on the Tibetan Plateau. The study area along a deglaciation chronosequence of 170-year comprising three ecosystem succession stages, including barren ground, herb steppe, and legume steppe. We quantified amino sugars and lignin phenols to assess the contributions of microbial and plant residues to SOC, and used FT-ICR mass spectroscopy to analyze the composition of dissolved organic matter. We found that herbal plant colonization increased SOC by enhancing ecosystem gross primary productivity, while subsequent legumes development decreased SOC, due to increased ecosystem respiration from labile organic carbon inputs. Plant residues were a greater contributor to SOC than microbial residues in the vegetated soils, but they were susceptible to microbial degradation compared to the more persistent and continuously accumulating microbial residues. Our findings revealed the organic carbon accumulation and stabilization process in early soil development, which provides mechanism insights into carbon sequestration during ecosystem restoration under climate change.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3