Abstract
Mitochondrial oxidative stress plays a critical role in cancer development and progression. However, there is limited research on the relationship between mitochondrial oxidative stress and liver hepatocellular carcinoma (LIHC). Mitochondrial oxidative stress-related genes were collected from Genecards Portal. Prognosis-linked genes (PLGs) were identified by univariate Cox regression analysis. A risk model was constructed based on the PLGs using least absolute shrinkage and selection operator (LASSO) analysis. Receiver operating characteristic (ROC) curves were used to determine the predictive ability of the model. The expression levels of the prognostic genes were verified in the cell lines. We constructed a novel risk model based on 9 prognostic genes (CYP2C19, CASQ2, LPL, TXNRD1, CACNA1S, SLC6A3, OXTR, BIRC5, and MMP1). Survival analysis showed that patients with a low-risk score had a much better overall survival (OS). Prognostic risk score was found to be an independent predictor of prognosis. Patients in the high-risk group had a less favorable tumor microenvironment characterized by a lower degree of immune cell infiltration. In contrast, the low-risk group demonstrated a higher degree of immune cell infiltration, which could potentially contribute to a more effective antitumor immune response. Our investigation reveals the oncogenic role of mitochondrial oxidative stress in LIHC. For the first time, we established a risk prediction model for mitochondrial oxidative stress in patients with LIHC.