AI-assisted ultrasound for early liver trauma: Animal models & clinical validation

Author:

Song Qing1,He Xuelei2,Wang Yanjie3,Gao Hanjing4,Tan Li5,Ma Jun1,Kang Linli1,Han Peng1,Luo Yukun1,Wang Kun6

Affiliation:

1. First Medical Center of General Hospital of Chinese PLA

2. Northwest University

3. Shandong Province Maternal and Child Health Care Hospital

4. General Hospital of Chinese PLA

5. Beijing Da Wang Lu Emergency Hospital

6. Chinese Academy of Sciences

Abstract

Abstract

The study aimed to develop an AI-assisted ultrasound model for early liver trauma identification, using data from Bama miniature pigs and patients in Beijing, China. A deep learning model was created and fine-tuned with animal and clinical data, achieving high accuracy metrics. In internal tests, the model outperformed both Junior and Senior sonographers. External tests showed the model's effectiveness, with a Dice Similarity Coefficient of 0.74, True Positive Rate of 0.80, Positive Predictive Value of 0.74, and 95% Hausdorff distance of 14.84. The model's performance was comparable to Junior sonographers and slightly lower than Senior sonographers. This AI model shows promise for liver injury detection, offering a valuable tool with diagnostic capabilities similar to those of less experienced human operators.

Publisher

Research Square Platform LLC

Reference30 articles.

1. The rate of success of the conservative management of liver trauma in a developing country;Buci S;World J Emerg Surg,2017

2. Liver trauma: What current management?;Tarchouli M;Hepatobiliary Pancreat Dis Int,2018

3. Saviano, A., et al. Liver Trauma: Management in the Emergency Setting and Medico-Legal Implications. Diagnostics (Basel). 12, (2022).

4. Hepatic Trauma Interventions;Pillai AS;Semin Intervent Radiol,2021

5. [Changes in the diagnosis and therapeutic management of hepatic trauma. A retrospective study comparing 2 series of cases in different (1997 – 1984 vs. 2001–2008)];Sánchez-Bueno F;Cir Esp,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3