Revisiting Named Entity Recognition in Food Computing: Enhancing Performance and Robustness

Author:

Akujuobi Uchenna1,Liu Shuhong2,Besold Tarek R.1

Affiliation:

1. Sony AI

2. University of Tokyo

Abstract

AbstractIn the ever-evolving domain of food computing, Named Entity Recognition (NER) presents transformative potential that extends far beyond mere word tagging in recipes. Its implications encompass intelligent recipe recommendations, health analysis, and personalization. Nevertheless, existing NER models in food computing encounter challenges stemming from variations in recipe input standards, limited annotations, and dataset quality. This article addresses the specific problem of ingredient NER and introduces two innovative models:SINERA, an efficient and robust model, andSINERAS, a semi-supervised variant that leverages a Gaussian Mixture Model (GMM) to learn from untagged ingredient list entries. To mitigate issues associated with data quality and availability in food computing, we introduce theSINERAdataset, a diverse and comprehensive repository of ingredient lines. Additionally, we identify and tackle a pervasive challenge---spurious correlations between entity positions and predictions. To address this, we propose a set of data augmentation rules tailored for food NER. Extensive evaluations conducted on theSINERAdataset and a revisedTASTEsetdataset underscore the performance of our models. They outperform several state-of-the-art benchmarks and rival the BERT model while maintaining smaller parameter sizes and reduced training times.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3