Optimizing crash box design to meet injury criteria: a protocol for accurate simulation and material selection

Author:

Rostro-Gonzalez Horacio1,Puigoriol-Forcada Josep-Maria1,Perez-Pena Armando2,Menacho Joaquin1,Garcia-Granada Andres-Amador1

Affiliation:

1. GEPI-IQS Grup Enginyeria Producte Industrial, Universitat Ramon Llull

2. ESI Group Hispania

Abstract

Abstract

The design of a deformation element or crash box that meets a given injury criterion based on deceleration requires careful consideration of physical properties and space requirements. Variations in material yield stress or geometry, can result in statistical variations in the injury criterion output. Optimizing the crash box to fulfil two different injury criteria and two different energy levels may require more space than initially specified. In this study, we propose a protocol where the crash box is collapsed, and force-displacement is fitted to an equation. This fit is carried out with just two simulations and compared to 30 possible scenarios, obtaining a maximum error of 38.9%. With this initial fit, the appropriate thickness and yield stress can be chosen to perform crashes with two energy levels and monitor four injury values. With the ideal yield stress and sheet metal thickness, we introduce real statistical distributions using Montecarlo design to perform 200 simulations and obtain 400 injury values for each design proposal. This technique ensures that the design will meet injury requirements for any possible combination of thickness and yield stress accepted by quality inspection. If only one simulation is performed, all designs meet the requirements, but only the last proposed design decreased the average injury to 9.2g with a standard deviation of 2.68g and a maximum value of 14.4g, which is less than the required 15g. This technique minimizes the risk of finding combinations of yield stress and thickness that produce an undesirable injury criterion.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3