Sector-Specific Supply and Demand Shocks: Joint Identification

Author:

Ivashchenko Sergey1

Affiliation:

1. Central Bank of the Russian Federation

Abstract

Abstract

This article proposes a technique for computing sign restrictions in large-scale models. The technique is applied to a Bayesian vector autoregression (BVAR) model with 16 industries (16 growth rates, 16 inflations), and the interest rate. The results demonstrate that the suggested technique can yield different implications for the density of relevant measures compared to the conventional random draw approach. Shocks identification is more accurate for suggested approach in experiments with simulated from DSGE model data. The usage of industry specific data and identification of demand and supply shock have large influence on identification of MP-shocks. It reveals important elements of transmission mechanics of monetary policy including differences in magnitude (up to 10–100 times) and shape of responses on MP-shocks, differences in historical decomposition, differences in importance of demand and supply shocks for interest rates dynamic. Variance decomposition shows decrease of relative importance of its own shocks to industries with switching from short-run to long-run decomposition. There are some similarities with input-output tables and some differences those open questions for future researches. JEL-classification: C32, C51, E32, E52

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. Adjemian S., H. Bastani, M. Juillard, F. Karame, F. Mihoubi, G. Perendia, J. Pfeifer, M. Ratto and S. Villemot (2011). Dynare: Reference Manual, Version 4 // Dynare Working Papers, 1, CEPREMAP

2. Juan Antolin-Diaz and Juan F. Rubio-Ramírez (2018) Narrative Sign Restrictions for SVARs // American Economic Review, 2018, vol. 108, issue 10, 2802-29

3. Marta Banbura, Domenico Giannone and Lucrezia Reichlin (2010) Large Bayesian vector auto regressions// Journal of Applied Econometrics, 2010, vol. 25, issue 1, 71–92

4. Christiane Baumeister and James Hamilton (2015) Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information // Econometrica, 2015, vol. 83, issue 5, 1963–1999

5. Christiane Baumeister and James Hamilton (2019) Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks // American Economic Review, 2019, vol. 109, issue 5, 1873–1910

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3