ForensicNet : Modern CNN-based Image Forgery Detection Network

Author:

Tyagi Shobhit1,Yadav Divakar1

Affiliation:

1. NIT Hamirpur (HP)

Abstract

Abstract The advancements in Image editing techniques produce realistic-looking artificial images with ease. These images can easily circumvent the forensic systems making the authentication process more tedious and difficult. To overcome this problem, we introduce a modern convolutional neural network (CNN) named ForensicNet, inspired by the recent developments in computer vision. The three major contributions of our CNNs are inverted bottleneck, separate downsampling layers, and using depth-wise convolutions for mixing information in the spatial dimension. The inverted bottlenecks help improve accuracy and reduce network parameters/FLOPs. The separate downsampling layers help converge the network. The nor-malization layers also help stabilize training whenever the spatial resolution is changed. The depth-wise convolution is a grouped convolution where the number of groups and channels are the same. The experiments show that ForensicNet outperforms the state-of-the-art methods by a large margin.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AE-LSTM: A Hybrid Approach for Detecting Deepfake Videos in Digital Forensics;Lecture Notes in Networks and Systems;2024

2. CNN-Based Deep Learning Approach Over Image Data for Cyber Forensic Investigation;Handbook of Research on Thrust Technologies’ Effect on Image Processing;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3