Intermittent hypoxia-induced enhancements in corticospinal excitability predict gains in motor learning and metabolic efficiency
Author:
Affiliation:
1. University of Colorado Boulder
2. University of Colorado Anschutz Medical Campus
3. Rocky Mountain Regional VA Medical Center
Abstract
Acute intermittent hypoxia (AIH) enhances human motor function after incomplete spinal cord injury. Although the underlying mechanisms in humans are unknown, emerging evidence indicates that AIH facilitates corticospinal excitability to the upper limb. However, the functional relevance of this plasticity remains unexplored, and it is unclear whether similar plasticity can be induced for lower limb motor areas. We recently demonstrated that AIH improves motor learning and metabolic efficiency during split-belt walking. Thus, we hypothesized that AIH increases lower limb excitability and that these enhancements would predict the magnitude of motor learning and the corresponding reductions in net metabolic power. We assessed tibialis anterior (TA) excitability using transcranial magnetic stimulation and quantified changes in spatiotemporal asymmetries and net metabolic power in response to split-belt speed perturbations. We show that AIH enhances TA excitability and that the magnitude of this facilitation positively correlates with greater spatiotemporal adaptation. Notably, we demonstrate a novel association between increased excitability and reduced net metabolic power during motor learning and savings. Together, our results suggest that AIH-induced gains in excitability predict both the magnitude of motor learning and the associated metabolic efficiency. Determining indices of AIH-induced improvements in motor performance is critical for optimizing its therapeutic reach.
Publisher
Research Square Platform LLC
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Intermittent hypoxia enhances voluntary activation and reduces performance fatigability during repeated lower limb contractions;2024-08-27
2. Perception of task duration affects metabolic cost during split-belt adaptation;2024-05-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3