A machine learning algorithm for distinguishing Saudi children with and without autism via eye-tracking data

Author:

Alarifi Hana1,Aldhalaan Hesham1,Hadjikhani Nouchine2,Johnels Jakob Åsberg3,Alarifi Jhan1,Ascenso Guido4,Alabdulaziz Reem1

Affiliation:

1. King Faisal Specialists Hospital and Research Center

2. Harvard/MGH Martinos Center for Biomedical Imaging

3. University of Gothenburg

4. Politecnico di Milano

Abstract

Abstract Background. Despite the prevalence of Autism Spectrum Disorder (ASD) globally, there's a knowledge gap pertaining to autism in Arabic nations. Recognizing the need for validated biomarkers for ASD, our study leverages eye-tracking technology to understand gaze patterns associated with ASD, focusing on joint attention (JA) and atypical gaze patterns during face perception. While previous studies typically evaluate a single eye-tracking metric, our research combines multiple metrics to capture the multidimensional nature of autism, focusing on dwell times on eyes, left facial side, and joint attention. Methods. We recorded data from 104 participants (41 neurotypical, mean age: 8.21 ± 4.12 years; 63 with ASD, mean age 8 ± 3.89 years). The data collection consisted of a series of visual stimuli of cartoon faces of humans and animals, presented to the participants in a controlled environment. During each stimulus, the eye movements of the participants were recorded and analyzed, extracting metrics such as time to first fixation and dwell time. We then used these data to train a machine learning classification algorithm, to determine if these biomarkers can be used to diagnose ASD. Results. We found no significant difference in eye-dwell time between autistic and control groups on human or animal eyes. However, autistic individuals focused less on the left side of both human and animal faces, indicating reduced left visual field (LVF) bias. They also showed slower response times and shorter dwell times on congruent objects during joint attention (JA) tasks, indicating diminished reflexive joint attention. No significant difference was found in time spent on incongruent objects during JA tasks. These results suggest potential eye-tracking biomarkers for autism. The machine learning model developed achieved accuracy = 0.744, precision = 0.808, recall = 0.778, and F1 score = 0.792, surpassing traditional machine learning methods trained with more typical data (i.e., SCQ scores) under all metrics considered. Conclusions. Although the autism group displayed notable differences in reflexive joint attention and left visual field bias, the dwell time on eyes was not significantly different. Nevertheless, the machine algorithm model trained on these data proved effective at diagnosing ASD, showing the potential of these biomarkers. Our study shows promising results and opens up potential for further exploration in this under-researched geographical context.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3