Affiliation:
1. Nantong University
2. Nantong University School of Public Health
Abstract
Abstract
This study explored the potential of utilizing aluminum-yttria-amended sludge biochar (Al/Y-CSBC) for efficient fluoride removal from wastewater. The adsorption kinetics of fluoride on modified Al/Y-CSBC followed the pseudo-second-order model, while the adsorption isotherm conformed to the Freundlich equation. Remarkably, the material exhibited excellent fluoride removal performance over a wide pH range, achieving a maximum adsorption capacity of 55.24 mg•g-1. Moreover, Al/Y-CSBC demonstrated exceptional reusability, maintaining 95% removal efficiency even after six regeneration cycles. The fluoride adsorption mechanism involved ion exchange, surface complexation, and electrostatic adsorption interactions. The activation and modification processes significantly increased the specific surface area of Al/Y-CSBC, leading to a high isoelectric point (pHpzc = 9.14). The incorporation of aluminum and yttrium metals exhibited a novel approach, enhancing the adsorption capacity for fluoride ions due to their strong affinity. Furthermore, the dispersing effect of biochar played a crucial role in improving defluoridation efficiency by enhancing accessibility to active sites. These findings substantiate the significant potential of Al/Y-CSBC for enhanced fluoride removal from wastewater.
Publisher
Research Square Platform LLC