Estimating Medication Adherence from Electronic Health Records: Comparing Methods for Mining and Processing Asthma Treatment Prescriptions

Author:

Tibble Holly1,Sheikh Aziz1,Tsanas Athanasios1

Affiliation:

1. University of Edinburgh

Abstract

Abstract Background Medication adherence is usually defined as the extent of the agreement between the medication regimen agreed to by patients with their healthcare provider and the real-world implementation. Proactive identification of those with poor adherence may be useful to identify those with poor disease control and offers the opportunity for ameliorative action. Adherence can be estimated from Electronic Health Records (EHRs) by comparing medication dispensing records to the prescribed regimen. Several methods have been developed in the literature to infer adherence from EHRs, however there is no clear consensus on what should be considered the gold standard in each use case. Our objectives were to critically evaluate different measures of medication adherence in a large longitudinal Scottish EHR dataset. We used asthma, a chronic condition with high prevalence and high rates of non-adherence, as a case study. Methods Over 1.6 million asthma controllers were prescribed for our cohort of 91,334 individuals, between January 2009 and March 2017. Eight adherence measures were calculated, and different approaches to estimating the amount of medication supply available at any time were compared. Results Estimates from different measures of adherence varied substantially. Three of the main drivers of the differences between adherence measures were the expected duration (if taken as in accordance with the dose directions), whether there was overlapping supply between prescriptions, and whether treatment had been discontinued. However, there are also wider, study-related, factors which are crucial to consider when comparing the adherence measures. Conclusions We evaluated the limitations of various medication adherence measures, and highlight key considerations about the underlying data, condition, and population to guide researchers choose appropriate adherence measures. This guidance will enable researchers to make more informed decisions about the methodology they employ, ensuring that adherence is captured in the most meaningful way for their particular application needs.

Publisher

Research Square Platform LLC

Reference63 articles.

1. World Health Organization. Adherence to Long-Term Therapies: Evidence for action. 2003.

2. Relationship of Inhaled Corticosteroid Adherence to Asthma Exacerbations in Patients with Moderate-to-Severe Asthma;Papi A;J Allergy Clin Immunology: Pract,2018

3. Medication adherence and the risk of severe asthma exacerbations: a systematic review;Engelkes M;Eur Respir J,2015

4. Risk factors for death in patients with severe asthma;Fernandes AGO;J Bras Pneumol,2014

5. The relationship between clinical outcomes and medication adherence in difficult-to-control asthma;Murphy AC;Thorax,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3