Biotransformation and detoxification of saxitoxin by Bacillus flexus in batch experiments

Author:

Mohamed Zakaria A1,Mostafa Yasser2,Alamri Saad2,Hashem Mohamed2,Alrumman Sulaiman2

Affiliation:

1. Sohag University

2. King Khalid University

Abstract

Abstract Saxitoxins (STXs) are carbamate alkaloid neurotoxins produced by some species of cyanobacteria. They are water soluble and relatively stable the natural environment, and thereby represent a risk to animal and human health through a long-time exposure. STXs cannot be sufficiently removed by conventional water treatment methods. Therefore, this study investigates the potential STX biodegradation and detoxification by bacteria as a promising method for toxin removal. STX biodegradation experiments were conducted using Bacillus flexus SSZ01 strain in batch cultures. The results revealed that SSZ01 strain grew well and rapidly detoxified STX, with no lag phase observed. STX detoxification by SSZ01 strain was initial-toxin-concentration–dependent. The highest biotransformation rate (10µg STX L-1 day-1) was obtained at the highest initial toxin concentrations (50µg L-1) and the lowest (0.06µg STX L-1 day-1) was recorded at the lowest initial concentration (0.5µg L-1). STX biotransformation rate increased with temperature, with highest occurred at 30 ºC. This rate was also influenced by pH, with highest obtained at pH8 and lowest at higher and lower pH values. HPLC chromatograms showed that STX biotransformation peak is corresponding to the least STX analogue (disulfated sulfocarbamoyl-C1 variant). The Artemia-based toxicity assay revealed that this biotransformation byproduct was nontoxic. This suggests the potential application of this bacterial strain in slow sand filters for cyanotoxin removal in water treatment plants. Being nontoxic, this byproduct needs to be assayed for its therapeutic effects towards neurodegenerative diseases.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3